Treatment News : Gene-Modified T Cells Persist for a Decade, Without Major Risks, in HIV Studies - by Tim Horn

POZ - Health, Life and HIV
Subscribe to:
POZ magazine
Join POZ: Facebook MySpace Twitter Pinterest
Tumblr Google+ Flickr MySpace
POZ Personals
Sign In / Join

Back to home » Treatment News » May 2012

Most Popular Links
Most Popular Lessons

The HIV Life Cycle


Herpes Simplex Virus

Syphilis & Neurosyphilis

Treatments for Opportunistic Infections (OIs)

What is AIDS & HIV?

Hepatitis & HIV

20 Years Ago In POZ

More Treatment News

Click here for more news

Have news about HIV? Send press releases, news tips and other announcements to


May 3, 2012

Gene-Modified T Cells Persist for a Decade, Without Major Risks, in HIV Studies

by Tim Horn

Genetically modified T cells—notably CD4 and CD8 cells—administered to people living with HIV participating in one of three clinical trials conducted between 1998 and 2002 are detectable more than a decade later, suggesting that single infusions of cells altered to target or block HIV have the potential for long-term efficacy. According to the paper, published in the May 2 issue of Science Translational Medicine and summarized in a University of Pennsylvania news release, the long-term safety of using retroviral vectors to deliver genetic payloads to T cells is also apparent, helping offset earlier concerns about the procedure.

“We have 43 patients, and they are all healthy,” says senior author Carl June, MD, of the University of Pennsylvania in the news announcement. “And out of those, 41 patients show long-term persistence of the modified T cells in their bodies.”

Gene therapies have long been eyed for their potential in the field of HIV, specifically as a way to render CD4 cells immune to infection and as a way to modify CD4 and CD8 cells to target virus that persists in long-lived cellular reservoirs that aren’t affected by antiretroviral therapy. One notable example of a gene therapy approach currently under investigation involves Sangamo Biosciences’ zinc finger nuclease (ZFN)-based therapy to strip CD4 cells of their CCR5 receptor and render the cells impervious to HIV infection.

“If you have a safe way to modify cells in patients with HIV, you can potentially develop curative approaches,” June says. “Patients now have to take medicine for their whole lives to keep their virus under control, but there are a number of gene therapy approaches that might be curative.” A lifetime of anti-HIV drug therapy, by contrast, is expensive and can be accompanied by significant side effects.

Two central questions regarding gene modification of T cells remain, however.

First, is it safe? Viruses are the most efficient way to widely distribute and integrate altered or man-made genetic bundles into cells, either while in the body or more commonly, after being removed from the body, treated, expanded and ultimately reinfused. A lingering concern has been that the use of viral vectors and alterations of human DNA may lead to mutations inside cells that can potentially increase the risk of cancers, notably leukemia.

Second, do genetically modified cells persist in the body? It is believed that cells endowed with enhanced or novel functions need to be maintained in high enough numbers for several years—if not a lifetime—to achieve maximum efficacy in treatment and curative approaches. This has been an important variable in the ongoing Sangamo ZFN trials—not only do modified cells need to effectively block HIV, they need to survive and thrive in various compartments in the body.

The three clinical trials conducted by June and his colleagues involved a retrovirus vector used to modify T cells so that they  carry a highly specific HIV-targeting “chimeric” receptor containing CD4 (needed to target a protein on HIV’s surface) and a “zeta” subunit of the CD3 receptor (needed to activate cells against HIV). Papers reporting initial results demonstrated some effects on HIV levels in various reservoirs, at least in the weeks and months following treatment, without any serious safety problems.

Though June and his colleagues were unable to report long-term antiviral activity and efficacy data—the studies were not designed for such—the researchers were required by the U.S. Food and Drug Administration to follow participants for up to 15 years, in light of the earlier concerns regarding cancer and other long-term side effects of therapy. By extension, June’s group was also able to conduct annual tests to see if the modified T cells at least persisted in their bodies.

With more than 500 years of combined safety data between the 43 patients followed for roughly 11 years, June’s group is “confident” that the retroviral vector system is safe for modifying T cells, they explain in the news announcement. More specifically, they write in their Science Translational Medicine report, “there was no evidence of vector-induced immortalization of cells; integration site distributions showed no evidence of persistent clonal expansion or enrichment for integration sites near genes implicated in growth control or transformation.” In other words, there was no evidence that the genetically modified cells were undergoing the mutations associated with cancer development.

June and his colleagues note that the worrying side effects associated with gene therapy in years’ past were seen when viral vectors were used to modify stem cells. His group’s results confirm those of other studies, indicating that the target cell for gene modification—in this case, mature CD4 and CD8 cells—plays an important role in the long-term safety for patients.

“T cells appear to be a safe haven for gene modification,” June says.

The multiyear blood samples also show that the gene-modified T cells have persisted in the patients’ blood for more than a decade. “In fact,” the researchers point out, “models suggest that more than half of the T cells or their progeny are still alive 16 years after infusion, which means one treatment might be able to kill off HIV-infected cells for decades.”

The prolonged safety data, thus far indicating that the potential benefits outweigh potential risks, means that it might be possible to test T cell–based gene therapy to treat diseases that aren’t life-threatening, such as arthritis.

“Until now, we’ve focused on cancer and HIV-infection, but these data provide a rationale for starting to focus on other disease types,” June says. “We view this as a personalized medicine platform to target disease using a patient’s own cells.”

"Engineered T cells are a promising form of synthetic biology for long-term delivery of protein-based therapeutics," the researchers conclude. "These results provide a framework to guide the therapy of a wide spectrum of human diseases."

Search: gene therapy, genetically modified, cd4, cd8, t-cells, persistence, safety, cancer, leukemia, carl june, university of pennsylvania, sagamo, zfn

Scroll down to comment on this story.


(will display; 2-50 characters)


(will NOT display)


(will display; optional)

Comment (500 characters left):

(Note: The POZ team reviews all comments before they are posted. Please do not include either ":" or "@" in your comment. The opinions expressed by people providing comments are theirs alone. They do not necessarily reflect the opinions of Smart + Strong, which is not responsible for the accuracy of any of the information supplied by people providing comments.)

Comments require captcha.
Please enter this number for verification:

| Posting Rules

Hide comments

Previous Comments:

  comments 15 - 18 (of 18 total)     << < previous

Brian, Beantown, 2012-05-05 09:48:43
Well, the fact that there was no long term efficacy delineation is perplexing-you do know the current T-cell counts of people and what they started at-that is about all we need and a basic blood work to show if its as good as a 50k a year "cocktail" and if not it would be a damn shame the FDA wasted 10 years to get this data and you have no path to deliver this as its not profitable-will America show it's soul and cure people if it can or will it fall back to money-great work-get this to me fast

jimmok, DC, 2012-05-05 00:48:23
NOT AGAIN.i have stopped believing in all these stories.the only thing that we will get is to only read such stories.m sick and we will have to wait another 30 years for it to benefit we will hear that there was a hidden threat and thats why it was rejected by the FDA and all that crap.i have hope but dont know why i have it.

Frederick Wright, Coachella Valley, 2012-05-04 13:54:56
Wow how did they keep this news under raps. Gene Therpy is very political charged, right up their with stem cells and needle exchange. I think this article is calling for HIVers to step up for research subjects and to advocate for funding directed at this Science. I am wondering if this is a complex process and expense to adminiser? It is hope for a Cure, so I am all for it although reservation in this decade old research science.

keith, Dublin, 2012-05-03 13:08:45
That sounds like a functional cure to me. Whats stopping them offering this to patients tomorrow

comments 15 - 18 (of 18 total)     << < previous

[Go to top]

Facebook Twitter Google+ MySpace YouTube Tumblr Flickr Instagram
Quick Links
Current Issue

HIV Testing
Safer Sex
Find a Date
Newly Diagnosed
HIV 101
Disclosing Your Status
Starting Treatment
Help Paying for Meds
Search for the Cure
POZ Stories
POZ Opinion
POZ Exclusives
Read the Blogs
Visit the Forums
Job Listings
Events Calendar
POZ on Twitter

Ask POZ Pharmacist

Talk to Us
Did you participate in an event for National Black HIV/AIDS Awareness Day 2016?


more surveys
Contact Us
We welcome your comments!
[ about Smart + Strong | about POZ | POZ advisory board | partner links | advertising policy | advertise/contact us | site map]
© 2016 Smart + Strong. All Rights Reserved. Terms of use and Your privacy.
Smart + Strong® is a registered trademark of CDM Publishing, LLC.